1	(i)	$\overrightarrow{\mathrm{AA}^{\prime}}=\left(\begin{array}{l} 2 \\ 4 \\ 1 \end{array}\right)-\left(\begin{array}{l} 1 \\ 2 \\ 4 \end{array}\right)=\left(\begin{array}{l} 1 \\ 2 \\ -3 \end{array}\right)$ This vector is normal to $x+2 y-3 z=0$ M is $\left(1^{1 / 2}, 3,2^{1 / 2}\right)$ $x+2 y-3 z=11 / 2+6-71 / 2=0$ $\Rightarrow M$ lies in plane	B1 B1 M1 A1 [4]	finding $A A^{\prime}$ or $A^{\prime} A$ subtraction must be seen B0 if $\overrightarrow{A A^{\prime}}, \overrightarrow{A^{\prime} A}$ confused Assume they have found $\overrightarrow{A A^{\prime}}$ if no label reference to normal or \boldsymbol{n}, or perpendicular to $x+2 y-3 z=0$, or statement that vector matches coefficients of plane and is therefore perpendicular, or showing AA' is perpendicular to two vectors in the plane for finding M correctly (can be implied by two correct coordinates) showing numerical subst of M in plane $=0$

	uest	answer	Marks	Guidance
1	(ii)	$\begin{aligned} & \mathbf{r}=\left(\begin{array}{l} 1 \\ 2 \\ 4 \end{array}\right)+\lambda\left(\begin{array}{l} 1 \\ -1 \\ 2 \end{array}\right)=\left(\begin{array}{l} 1+\lambda \\ 2-\lambda \\ 4+2 \lambda \end{array}\right) \text { meets plane } \mathbf{v} \\ & \Rightarrow \quad-7-7 \lambda=0, \lambda=-1 \\ & \quad \begin{array}{l} \text { So } \mathrm{B} \text { is }(0,3,2) \end{array} \\ & \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} 0 \\ 3 \\ 2 \end{array}\right)-\left(\begin{array}{l} 2 \\ 4 \\ 1 \end{array}\right)=\left(\begin{array}{l} -2 \\ -1 \\ 1 \end{array}\right) \end{aligned}$ Eqn of line $A^{\prime} B$ is $\mathbf{r}=\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right)$	M1 A1 A1 M1 B1 ft A1 ft [6]	subst of $\mathbf{A B}$ in the plane cao or $\overrightarrow{B A^{\prime}}$, ft only on their B (condone $\overrightarrow{A^{\prime} B}$ used as $\overrightarrow{B A^{\prime}}$ or no label) (can be implied by two correct coordinates) $\begin{aligned} & \left(\begin{array}{l} 2 \\ 4 \\ 1 \end{array}\right) \text { or their } \mathrm{B}+\ldots . . \\ & \ldots \lambda \times \text { their } \overrightarrow{A^{\prime} B}\left(\text { or } \overrightarrow{B A^{\prime}}\right) \quad \mathrm{ft} \text { only their } \mathrm{B} \text { correctly } \end{aligned}$
1	(iii)	$\begin{aligned} & \text { Angle between }\left(\begin{array}{l} 1 \\ -1 \\ 2 \end{array}\right) \text { and }\left(\begin{array}{l} -2 \\ -1 \\ 1 \end{array}\right) \\ & \Rightarrow \quad \cos \theta=\frac{1 \cdot(-2)+(-1) \cdot(-1)+2 \cdot 1}{\sqrt{6} \cdot \sqrt{6}} \\ & =1 / 6 \end{aligned}$	M1 M1 A1 A1 [4]	correct vectors but ft their $\overrightarrow{A^{\prime} B}$. Allow say, $\left(\begin{array}{l}-1 \\ 1 \\ -2\end{array}\right)$ and/or $\left(\begin{array}{l}2 \\ 1 \\ -1\end{array}\right)$ condone a minor slip if intention is clear correct formula (including $\cos \theta$) for their direction vectors from (ii) condone a minor slip if intention is clear $\pm 1 / 6$ or 99.6° from appropriate vectors only soi Do not allow either A mark if the correct B was found fortuitously in (ii) cao or better

	uestion	answer	Marks	Guidance
1	(iv)	Equation of BC is $\mathbf{r}=\left(\begin{array}{l}2 \\ 4 \\ 1\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ -1 \\ 1\end{array}\right)=\left(\begin{array}{c}2-2 \lambda \\ 4-\lambda \\ 1+\lambda\end{array}\right)$ Crosses Oxz plane when $y=0$ $\Rightarrow \lambda=4$ $\Rightarrow \mathbf{r}=\left(\begin{array}{l} -6 \\ 0 \\ 5 \end{array}\right) \text { so }(-6,0,5)$	M1 A1 A1 [3]	NB this is not unique $\text { eg }\left(\begin{array}{l} 0 \\ 3 \\ 2 \end{array}\right)+\mu\left(\begin{array}{l} 2 \\ 1 \\ -1 \end{array}\right)$ For putting $y=0$ in their line $B C$ and solving for λ Do not allow either A mark if B was found fortuitously in (ii) for A marks need fully correct work only NB this is not unique $\text { eg }\left(\begin{array}{l} 0 \\ 3 \\ 2 \end{array}\right)+\mu\left(\begin{array}{l} 2 \\ 1 \\ -1 \end{array}\right) \text { leads to } \mu=-3$ cao

$\begin{aligned} & \text { 2(i) } \begin{aligned} & \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} -4 \\ 0 \\ -2 \end{array}\right), \overrightarrow{\mathrm{AC}}=\left(\begin{array}{l} -2 \\ 4 \\ 1 \end{array}\right) \\ & \cos \mathrm{BAC}=\frac{\left(\begin{array}{l} -4 \\ 0 \\ -2 \end{array}\right) \cdot\left(\begin{array}{l} -2 \\ 4 \\ 1 \end{array}\right)}{\mathrm{AB} \cdot \mathrm{AC}}=\frac{(-4) \cdot(-2)+0.4+(-2) \cdot 1}{\sqrt{20} \sqrt{21}} \\ &=0.293 \\ & \Rightarrow \quad \mathrm{BAC}=73.0^{\circ} \end{aligned} \end{aligned}$	M1 M1 A1 A1 [6]	dot product evaluated $\boldsymbol{\operatorname { c o s }} \mathrm{BAC}=\operatorname{dot}$ product $/\|\mathrm{AB}\| .\|\mathrm{AC}\|$ 0.293 or cos ABC=correct numerical expression as RHS above, or better or rounds to 73.0° (accept $73^{\circ} \mathrm{www}$)	condone rows substituted, ft their vectors AB, AC for method only need to see method for modulae as far as $\sqrt{ }$... use of vectors BA and CA could obtain B0 B0 M1 M1 A1 A1 (or 1.27 radians)
$\begin{array}{ll} \text { (ii) } & \text { A: } x+y-2 z+d=2-6+d=0 \\ d=4 \\ & \mathrm{~B}:-2+0-2 \times 1+4=0 \\ & \mathrm{C}: 0+4-2 \times 4+4=0 \\ & \text { Normal } \mathbf{n}=\left(\begin{array}{l} 1 \\ 1 \\ -2 \end{array}\right) \\ & \text { n. }\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right)=\frac{-2}{\sqrt{6}}=\cos \theta \\ \Rightarrow & \theta=144.7^{\circ} \\ \Rightarrow & \text { acute angle }=35.3^{\circ} \end{array}$	M1 DM1 A1 B1 M1 A1 A1 [7]	substituting one point evaluating for other two points $d=4 \mathrm{www}$ stated or used as normal anywhere in part (ii) finding angle between normal vector and \mathbf{k} allow $\pm 2 / \sqrt{6}$ or 144.7° for A1 or rounds to 35.3°	alternatively, finding the equation of the plane using any valid method (eg from vector equation, M1 A1 for using valid equation and eliminating both parameters, A1 for required form, or using vector cross product to get $x+y-2 z=c$ oe M1 A1,finding c and required form, A 1 , or showing that two vectors in the plane are perpendicular to normal vector M1 A1 and finding d, A1) oe (may have deliberately made +ve to find acute angle) do not need to find 144.7° explicitly (or 0.615 radians)
$\begin{array}{ll} \hline \text { (iii) } & \text { At } \mathrm{D},-2+4-2 k+4=0 \\ \Rightarrow & 2 k=6, k=3 * \\ & \overrightarrow{\mathrm{CD}}=\left(\begin{array}{l} -2 \\ 0 \\ -1 \end{array}\right)=\frac{1}{2} \overrightarrow{\mathrm{AB}} \\ \Rightarrow & \mathrm{CD} \text { is parallel to } \mathrm{AB} \\ & \mathrm{CD}: \mathrm{AB}=1: 2 \end{array}$	M1 A1 M1 A1 B1 [5]	substituting into plane equation AG $\overrightarrow{\mathrm{CD}}=\left(\begin{array}{l} -2 \\ 0 \\ -1 \end{array}\right)$ mark final answer www allow $C D: A B=1 / 2, \sqrt{ } 5: \sqrt{ } 20$ oe, $A B$ is twice $C D$ oe	finding vector CD (or vector DC) or DC parallel to AB or BA oe (or hence two parallel sides, if clear which) but A0 if their vector $C D$ is vector DC for $B 1$ allow vector $C D$ used as vector $D C$

3(i) $\begin{aligned} & \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} 100-(-200) \\ 200-100 \\ 100-0 \end{array}\right)=\left(\begin{array}{l} 300 \\ 100 \\ 100 \end{array}\right) * \\ & \mathrm{AB}=\sqrt{ }\left(300^{2}+100^{2}+100^{2}\right)=332 \mathrm{~m} \end{aligned}$	E1 M1 A1 [3]	accept surds
$\begin{aligned} \text { (ii) } & \mathbf{r}=\left(\begin{array}{l} -200 \\ 100 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{l} 300 \\ 100 \\ 100 \end{array}\right) \\ & \text { Angle is between }\left(\begin{array}{l} 3 \\ 1 \\ 1 \end{array}\right) \text { and }\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right) \\ \Rightarrow \quad & \cos \theta=\frac{3 \times 0+1 \times 0+1 \times 1}{\sqrt{11} \sqrt{1}}=\frac{1}{\sqrt{11}} \\ \Rightarrow \quad & \theta=72.45^{\circ} \end{aligned}$	B1B1 M1 M1 A1 A1 [6]	oe ...and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ complete scalar product method(including cosine) for correct vectors 72.5° or better, accept 1.26 radians
(iii) Meets plane of layer when $\begin{aligned} & (-200+300 \lambda)+2(100+100 \lambda)+3 \times 100 \lambda=320 \\ & \Rightarrow \quad 800 \lambda=320 \\ & \Rightarrow \quad \lambda=2 / 5 \\ & \quad \mathbf{r}=\left(\begin{array}{l} -200 \\ 100 \\ 0 \end{array}\right)+\frac{2}{5}\left(\begin{array}{l} 300 \\ 100 \\ 100 \end{array}\right)=\left(\begin{array}{l} -80 \\ 140 \\ 40 \end{array}\right) \end{aligned}$ so meets layer at $(-80,140,40)$	M1 A1 M1 A1 [4]	
(iv) Normal to plane is $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ Angle is between $\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ $\begin{aligned} & \Rightarrow \quad \cos \theta=\frac{3 \times 1+1 \times+1 \times 3}{\sqrt{11} \sqrt{14}}=\frac{8}{\sqrt{11} \sqrt{14}}=0.6446 . . \\ & \Rightarrow \quad \theta=49.86^{\circ} \\ & \Rightarrow \quad \text { angle with layer }=40.1^{\circ} \end{aligned}$ MathsTutor.com	B1 M1A1 A1 A1 [5]	complete method ft 90-their θ accept radians

$\begin{aligned} \text { 4(i) } & \overrightarrow{\mathrm{AB}} \end{aligned}=\left(\begin{array}{l} -1 \\ -2 \\ 0 \end{array}\right) .$	B1 B1 [2]	or equivalent alternative
$\begin{aligned} & \text { (ii) } \quad \mathbf{n}=\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right) \\ & \Rightarrow \quad \cos \theta=\frac{\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 1 \\ 2 \\ \sqrt{2} \\ 5 \end{array}\right)}{\Rightarrow \quad}=\frac{1}{\sqrt{10}} \\ & \Rightarrow=71.57^{\circ} \end{aligned}$	B1 B1 M1 M1 A1 [5]	correct vectors (any multiples) scalar product used finding invcos of scalar product divided by two modulae 72° or better
$\begin{aligned} & \text { (iii) } \cos \phi=\frac{\left(\begin{array}{c} -1 \\ 0 \\ -1 \end{array}\right) \cdot\left(\begin{array}{l} -2 \\ -2 \\ -1 \end{array}\right)}{\sqrt{2} \sqrt{9}}=\frac{2+1}{3 \sqrt{2}}=\frac{1}{\sqrt{2}} \\ & \Rightarrow \quad \phi=45^{\circ} * \end{aligned}$	M1 A1 E1 [3]	ft their \mathbf{n} for method $\pm 1 / \sqrt{2}$ oe exact
$\begin{aligned} & \text { (iv) } \sin 71.57^{\circ}=k \sin 45^{\circ} \\ & \Rightarrow \quad k=\sin 71.57^{\circ} / \sin 45^{\circ}=1.34 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { [2] } \end{aligned}$	ft on their 71.57° oe
$\begin{aligned} & \text { (v) } \quad \mathbf{r}=\left(\begin{array}{l} 0 \\ 0 \\ 2 \end{array}\right)+\mu\left(\begin{array}{l} -2 \\ -2 \\ -1 \end{array}\right) \\ & x=-2 \mu, z=2-\mu \\ & x+z=-1 \\ & \Rightarrow-2 \mu+2-\mu=-1 \\ & \Rightarrow 3 \mu=3, \mu=1 \\ & \Rightarrow \quad \text { point of intersection is }(-2,-2,1) \\ & \text { distance travelled through glass } \\ &=\text { distance between }(0,0,2) \text { and }(-2,-2,1) \\ &=\sqrt{ }\left(2^{2}+2^{2}+1^{2}\right)=3 \mathrm{~cm} \end{aligned}$	M1 M1 A1 A1 B1 [5]	soi subst in $x+z=-1$ www dep on $\mu=1$

