1 (i)	$\overrightarrow{AA'} = \begin{pmatrix} 2\\4\\1 \end{pmatrix} - \begin{pmatrix} 1\\2\\4 \end{pmatrix} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix}$	B1	finding AA' or $A'A$ subtraction must be seenB0 if $\overrightarrow{AA'}$, $\overrightarrow{A'A}$ confusedAssume they have found $\overrightarrow{AA'}$ if no label
	This vector is normal to $x + 2y - 3z = 0$	B1	reference to normal or n , or perpendicular to $x + 2y - 3z = 0$, or statement that vector matches coefficients of plane and is therefore perpendicular, or showing AA' is perpendicular to two vectors in the plane
	M is $(1\frac{1}{2}, 3, 2\frac{1}{2})$ x + 2y - 3z = $1\frac{1}{2}$ + 6 - $7\frac{1}{2}$ = 0	M1	for finding M correctly (can be implied by two correct coordinates)
	\Rightarrow M lies in plane	A1 [4]	showing numerical subst of M in plane = 0

Q	Question		answer		Guidance	
1	(ii)		$\mathbf{r} = \begin{pmatrix} 1\\2\\4 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\2 \end{pmatrix} = \begin{pmatrix} 1+\lambda\\2-\lambda\\4+2\lambda \end{pmatrix} \text{ meets plane when}$ $1 + \lambda + 2(2 - \lambda) - 3(4 + 2\lambda) = 0$ $\Rightarrow -7 - 7\lambda = 0, \ \lambda = -1$ So B is (0, 3, 2) $\overrightarrow{AB} = \begin{pmatrix} 0\\3\\2 \end{pmatrix} - \begin{pmatrix} 2\\4\\1 \end{pmatrix} = \begin{pmatrix} -2\\-1\\1 \end{pmatrix}$	M1 A1 A1 M1	subst of AB in the plane cao or $\overline{B}\overline{A'}$, ft only on their B (condone $\overline{A'B}$ used as $\overline{B}\overline{A'}$ or no label) (can be implied by two correct coordinates)	
			Eqn of line A'B is $\mathbf{r} = \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \begin{pmatrix} -2\\-1\\1 \end{pmatrix}$	B1 ft A1 ft	$\begin{pmatrix} 2\\4\\1 \end{pmatrix} \text{ or their B} + \dots$ $\dots \lambda \times \text{their } \overrightarrow{A'B} \text{ (or } \overrightarrow{BA'} \text{)} \qquad \text{ft only their B correctly}$	
				[6]	$\dots \lambda \times \text{then } A D \text{ (or } DA \text{)} \text{ it only then } D \text{ concerny}$	
1	(iii)		Angle between $\begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}$	M1	correct vectors but ft their $\overrightarrow{A'B}$. Allow say, $\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$ and/or $\begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$	
					condone a minor slip if intention is clear	
			$\Rightarrow \cos\theta = \frac{1.(-2) + (-1).(-1) + 2.1}{\sqrt{6}.\sqrt{6}}$	M1	correct formula (including $\cos\theta$) for their direction vectors from (ii) condone a minor slip if intention is clear	
			= 1/6	A1	$\pm 1/6$ or 99.6° from appropriate vectors only soi Do not allow either A mark if the correct <i>B</i> was found fortuitously in (ii)	
			$\Rightarrow \theta = 80.4^{\circ}$	A1 [4]	cao or better	

Q	uestion	answer		Guidance	
1	(iv)	Equation of BC is $\mathbf{r} = \begin{pmatrix} 2\\4\\1 \end{pmatrix} + \lambda \begin{pmatrix} -2\\-1\\1 \end{pmatrix} = \begin{pmatrix} 2-2\lambda\\4-\lambda\\1+\lambda \end{pmatrix}$		NB this is not unique eg $\begin{pmatrix} 0\\3\\2 \end{pmatrix} + \mu \begin{pmatrix} 2\\1\\-1 \end{pmatrix}$	
		Crosses Oxz plane when $y = 0$	M1	For putting $y = 0$ in their line BC and solving for λ	
		$\Rightarrow \lambda = 4$	A1	Do not allow either A mark if <i>B</i> was found fortuitously in (ii) for A marks need fully correct work only NB this is not unique $eg \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$ leads to $\mu = -3$	
		$\Rightarrow \mathbf{r} = \begin{pmatrix} -6\\0\\5 \end{pmatrix} \text{ so } (-6,0,5)$	A1	cao	
			[3]		

2(i)	$\overrightarrow{AB} = \begin{pmatrix} -4\\0\\-2 \end{pmatrix}, \overrightarrow{AC} = \begin{pmatrix} -2\\4\\1 \end{pmatrix}$	B1B1		condone rows
	$\cos BAC = \frac{\begin{pmatrix} -4\\0\\-2 \end{pmatrix} \begin{pmatrix} -2\\4\\1 \end{pmatrix}}{AB.AC} = \frac{(-4).(-2) + 0.4 + (-2).1}{\sqrt{20}\sqrt{21}}$ $= 0.293$	M1 M1 A1	dot product evaluated cos BAC= dot product / AB . AC 0.293 or cos ABC=correct numerical expression as RHS above, or better	substituted, ft their vectors AB, AC for method only need to see method for modulae as far as $$ use of vectors BA and CA could obtain B0 B0 M1 M1 A1 A1
\Rightarrow	$BAC = 73.0^{\circ}$	A1 [6]	or rounds to 73.0° (accept 73° www)	(or 1.27 radians)
(ii) ⇒	A: $x + y - 2z + d = 2 - 6 + d = 0$ d = 4 B: $-2 + 0 - 2 \times 1 + 4 = 0$ C: $0 + 4 - 2 \times 4 + 4 = 0$ Normal $\mathbf{n} = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$ $\mathbf{n} \cdot \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \frac{-2}{\sqrt{6}} = \cos \theta$ $\theta = 144.7^{\circ}$	M1 DM1 A1 B1 M1 A1	substituting one point evaluating for other two points d = 4 www stated or used as normal anywhere in part (ii) finding angle between normal vector and k allow $\pm 2/\sqrt{6}$ or 144.7° for A1	alternatively, finding the equation of the plane using any valid method (eg from vector equation, M1 A1 for using valid equation and eliminating both parameters, A1 for required form, or using vector cross product to get $x+y-2z = c$ oe M1 A1,finding c and required form, A1, or showing that two vectors in the plane are perpendicular to normal vector M1 A1 and finding d, A1) oe (may have deliberately made +ve to find acute angle) do not need to find 144.7° explicitly
\Rightarrow	acute angle = 35.3°	A1 [7]	or rounds to 35.3°	(or 0.615 radians)
(iii) ⇒	At D, $-2 + 4 - 2k + 4 = 0$ 2k = 6, k = 3 * $\overrightarrow{CD} = \begin{pmatrix} -2 \\ 0 \\ -1 \end{pmatrix} = \frac{1}{2} \overrightarrow{AB}$	M1 A1 M1	substituting into plane equation \overrightarrow{AG} $\overrightarrow{CD} = \begin{pmatrix} -2 \\ 0 \\ -1 \end{pmatrix}$	finding vector CD (or vector DC) or DC parallel to AB or BA oe (or hence two parallel
⇒	CD is parallel to AB CD : AB = 1 : 2	A1 B1 [5]	mark final answer www allow CD:AB=1/2, $\sqrt{5}$: $\sqrt{20}$ oe, AB is twice CD oe	sides, if clear which) but A0 if their vector CD is vector DC for B1 allow vector CD used as vector DC

	3(i)	$\overline{AB} = \begin{pmatrix} 100 - (-200) \\ 200 - 100 \\ 100 - 0 \end{pmatrix} = \begin{pmatrix} 300 \\ 100 \\ 100 \end{pmatrix} *$ $AB = \sqrt{(300^2 + 100^2 + 100^2)} = 332 \text{ m}$	E1 M1 A1 [3]	accept surds
	(ii)	$\mathbf{r} = \begin{pmatrix} -200\\ 100\\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 300\\ 100\\ 100 \end{pmatrix}$	B1B1	oe
		Angle is between $\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	M1	\dots and $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$
	\Rightarrow	$\cos \theta = \frac{3 \times 0 + 1 \times 0 + 1 \times 1}{\sqrt{11}\sqrt{1}} = \frac{1}{\sqrt{11}}$	M1 A1	complete scalar product method(including cosine) for correct vectors
	⇒	$\theta = 72.45^{\circ}$	A1 [6]	72.5° or better, accept 1.26 radians
	(-200	Meets plane of layer when $(+300\lambda) + 2(100+100\lambda) + 3 \times 100\lambda = 320$	M1	
	$\begin{array}{c} \Rightarrow \\ \Rightarrow \end{array}$	$800\lambda = 320$ $\lambda = 2/5$	A1	
		$\mathbf{r} = \begin{pmatrix} -200\\100\\0 \end{pmatrix} + \frac{2}{5} \begin{pmatrix} 300\\100\\100 \end{pmatrix} = \begin{pmatrix} -80\\140\\40 \end{pmatrix}$	M1	
		so meets layer at (-80, 140, 40)	A1 [4]	
	(iv)	Normal to plane is $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$	B1	
	Angle	e is between $\begin{pmatrix} 3\\1\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$		
	\Rightarrow	$\cos\theta = \frac{3 \times 1 + 1 \times + 1 \times 3}{\sqrt{11}\sqrt{14}} = \frac{8}{\sqrt{11}\sqrt{14}} = 0.6446$	M1A1	complete method
		$\Rightarrow \theta = 49.86^{\circ}$ angle with layer = 40.1°	A1 A1	ft 90-theirθ
PhysicsAnd №	laths		[5]	accept radians

4(i)	$\vec{AB} = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$	B1	
	$\mathbf{r} = \begin{pmatrix} 0\\0\\2 \end{pmatrix} + \lambda \begin{pmatrix} 1\\2\\0 \end{pmatrix}$	B1 [2]	or equivalent alternative
(ii)	$\mathbf{n} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$	B1	
⇒	$\cos\theta = \frac{\begin{pmatrix} 1\\0\\1 \end{pmatrix} \begin{pmatrix} 1\\2\\0 \end{pmatrix}}{\sqrt{2\sqrt{5}}} = \frac{1}{\sqrt{10}}$ $\theta = 71.57^{\circ}$	B1 M1 M1 A1 [5]	correct vectors (any multiples) scalar product used finding invcos of scalar product divided by two modulae 72° or better
(iii) ⇒	$\phi = 45^{\circ} *$	M1 A1 E1 [3]	ft their n for method $\pm 1/\sqrt{2}$ oe exact
(iv) ⇒	$\sin 71.57^\circ = k \sin 45^\circ$ $k = \sin 71.57^\circ / \sin 45^\circ = 1.34$	M1 A1 [2]	ft on their 71.57° oe
(v)	$\mathbf{r} = \begin{pmatrix} 0\\0\\2 \end{pmatrix} + \mu \begin{pmatrix} -2\\-2\\-1 \end{pmatrix}$		
↑↑↑↑↑	$x = -2\mu, z = 2-\mu$ x + z = -1 $-2\mu + 2 - \mu = -1$ $3 \mu = 3, \mu = 1$ point of intersection is (-2, -2, 1)	M1 M1 A1 A1	soi subst in $x+z = -1$
	distance travelled through glass = distance between (0, 0, 2) and (-2, -2, 1) = $\sqrt{(2^2 + 2^2 + 1^2)} = 3$ cm	B1 [5]	www dep on $\mu=1$